Asymmetrical ligand binding by abscisic acid 8'-hydroxylase.

نویسندگان

  • Kotomi Ueno
  • Hidetaka Yoneyama
  • Masaharu Mizutani
  • Nobuhiro Hirai
  • Yasushi Todoroki
چکیده

Abscisic acid (ABA), a plant stress hormone, has a chiral center (C1') in its molecule, yielding the enantiomers (1'S)-(+)-ABA and (1'R)-(-)-ABA during chemical synthesis. ABA 8'-hydroxylase (CYP707A), which is the major and key P450 enzyme in ABA catabolism in plants, catalyzes naturally occurring (1'S)-(+)-enantiomer, whereas it does not recognize naturally not occurring (1'R)-(-)-enantiomer as either a substrate or an inhibitor. Here we report a structural ABA analogue (AHI1), whose both enantiomers bind to recombinant Arabidopsis CYP707A3, in spite of stereo-structural similarity to ABA. The difference of AHI1 from ABA is the absence of the side-chain methyl group (C6) and lack of the alpha,beta-unsaturated carbonyl (C2'C3'-C4'O) in the six-membered ring. To explore which moiety is responsible for asymmetrical binding by CYP707A3, we synthesized and tested ABA analogues that lacked each moiety. Competitive inhibition was observed for the (1'R) enantiomers of these analogues in the potency order of (1'R,2'R)-(-)-2',3'-dihydro-4'-deoxo-ABA (K(I)=0.45 microM)>(1'R)-(-)-4'-oxo-ABA (K(I)=27 microM)>(1'R)-(-)-6-nor-ABA and (1'R,2'R)-(-)-2',3'-dihydro-ABA (no inhibition). In contrast to the (1'R)-enantiomers, the inhibition potency of the (1'S)-analogues declined with the saturation of the C2',C3'-double bond or with the elimination of the C4'-oxo moiety. These findings suggest that the C4'-oxo moiety coupled with the C2',C3'-double bond is the significant key functional group by which ABA 8'-hydroxylase distinguishes (1'S)-(+)-ABA from (1'R)-(-)-ABA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid.

Abscisic acid (ABA) is involved in a number of critical processes in normal growth and development as well as in adaptive responses to environmental stresses. For correct and accurate actions, a physiologically active ABA level is controlled through fine-tuning of de novo biosynthesis and catabolism. The hydroxylation at the 8'-position of ABA is known as the key step of ABA catabolism, and thi...

متن کامل

Enlarged analogues of uniconazole, new azole containing inhibitors of ABA 8'-hydroxylase CYP707A.

We enlarged the uniconazole (UNI) molecule to find a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, and synthesized various UNI derivatives that were substituted with hydrophilic and hydrophobic groups at the 4-chlorine of the phenyl group of UNI using click chemistry. Considering its potency in ABA 8'-hydroxylase inhibition, its small effect on seedling growth, and its ease of appli...

متن کامل

Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of...

متن کامل

Abscinazole-E1, a novel chemical tool for exploring the role of ABA 8'-hydroxylase CYP707A.

We developed abscinazole-E1 (Abz-E1), a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase (CYP707A). This inhibitor was designed and synthesized as an enlarged analogue of uniconazole (UNI), a well-known plant growth retardant, which inhibits a gibberellin biosynthetic enzyme (ent-kaurene oxidase, CYP701A) as well as CYP707A. Our results showed that Abz-E1 functions as a potent inhibitor...

متن کامل

Active-site probes of flavoproteins.

The chemical reactivity of 8-chloroflavins and 8-mercaptoflavins has been exploited in order to examine the orientation of protein-bound flavins relative to solvent. The apoprotein form of a series of flavoproteins was prepared and the native flavin was replaced by either 8-C1-flavin or 8-mercaptoflavin (FAD, FMN, or riboflavin form as was appropriate). The reconstituted proteins were exposed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 15 18  شماره 

صفحات  -

تاریخ انتشار 2007